Endotoxin-neutralizing antimicrobial proteins of the human placenta.

نویسندگان

  • Hun Sik Kim
  • Ju Hyun Cho
  • Hyoung Woo Park
  • Ho Yoon
  • Mi Sun Kim
  • Sun Chang Kim
چکیده

Microbial colonization and infection of placental tissues often lead to adverse pregnancy outcomes such as preterm birth, a leading cause of neonatal morbidity and mortality. The fetal membranes of the placenta, a physical and active barrier to microbial invasion, encapsulate the fetus and secure its intrauterine environment. To examine the innate defense system of the human placenta, antimicrobial peptides were isolated from the fetal membranes of human placenta and characterized biochemically. Two salt-resistant antimicrobial host proteins were purified to homogeneity using heparin-affinity and reversed-phase HPLC. Characterization of these proteins revealed that they are identical to histones H2A and H2B. Histones H2A and H2B showed dose-dependent inhibition of the endotoxin activity of LPS and inhibited this activity by binding to and therefore blocking both the core and lipid A moieties of LPS. Consistent with a role for histones in the establishment of placental innate defense, histones H2A and H2B were highly expressed in the cytoplasm of syncytiotrophoblasts and amnion cells, where the histone proteins were localized mainly to the epithelial surface. Furthermore, culturing of amnion-derived WISH cells led to the constitutive release of histone H2B, and histones H2A and H2B contribute to bactericidal activity of amniotic fluid. Our studies suggest that histones H2A and H2B may endow the epithelium of the placenta with an antimicrobial and endotoxin-neutralizing barrier against microorganisms that invade this immune-privileged site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of BPI (bactericidal/permeability-increasing protein) in human mucosal epithelia.

Among the antimicrobial proteins and peptides of humans is the cationic 55 kDa bactericidal/permeability-increasing protein (BPI), which possesses antibacterial, endotoxin-neutralizing and opsonic activity against Gram-negative bacteria. Although identified originally as an abundant constituent of neutrophil granules, we have recently identified functional expression of BPI by human mucosal epi...

متن کامل

Aminoglycosides modify the in vitro metachromatic reaction and murine generalized Shwartzman phenomenon induced by Salmonella minnesota R595 lipopolysaccharide.

Endotoxin-neutralizing activity may be an important property for antibiotics to be used in severe sepsis. Several antibiotics, belonging to different classes, were evaluated as to their endotoxin-neutralizing ability, using the inhibition of an in vitro metachromatic assay for lipopolysaccharides and a murine generalized Shwartzman reaction model. Gentamicin, amikacin, and sisomicin have been f...

متن کامل

Augmentation of the lipopolysaccharide-neutralizing activities of human cathelicidin CAP18/LL-37-derived antimicrobial peptides by replacement with hydrophobic and cationic amino acid residues.

Mammalian myeloid and epithelial cells express various peptide antibiotics (such as defensins and cathelicidins) that contribute to the innate host defense against invading microorganisms. Among these peptides, human cathelicidin CAP18/LL-37 (L(1) to S(37)) possesses not only potent antibacterial activity against gram-positive and gram-negative bacteria but also the ability to bind to gram-nega...

متن کامل

Protective effects of a human 18-kilodalton cationic antimicrobial protein (CAP18)-derived peptide against murine endotoxemia.

CAP18 (an 18-kDa cationic antimicrobial protein) is a granulocyte-derived protein that can bind lipopolysaccharide (LPS) and inhibit various activities of LPS in vitro. The present study examined the protective effect of a synthetic 27-amino-acid peptide (CAP18(109-135)) from the LPS-binding domain of CAP18 against antibiotic-induced endotoxin shock, using highly LPS-sensitive D-(+)-galactosami...

متن کامل

Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide.

Treatment of Gram-negative bacterial infections with antimicrobial agents can cause release of the endotoxin lipopolysaccharide (LPS), the potent initiator of sepsis, which is the major cause of mortality in intensive care units worldwide. Structural information on peptides bound to LPS can lead to the development of more effective endotoxin neutralizers. Short linear antimicrobial and endotoxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 168 5  شماره 

صفحات  -

تاریخ انتشار 2002